Commercial & Enterprise Edition Feature
The SQLCipher Framework package provides full database encryption for macOS applications. The pre-compiled binary is easily imported into an Xcode project to be dynamically linked to an application. This provides the quickest integration and fastest application builds:
SQLCipher Framework for macOS is "commercial edition" software that can be purchased directly from the Zetetic Store. Licensed software is delivered immediately upon payment.
Important Note: SQLCipher can also be integrated with macOS applications using the free Community Edition software. This approach is described in a separate tutorial. However, the commercial edition Frameworks have some significant advantages:
The remainder of this document provides a practical example of how to integrate SQLCipher in an Xcode project.
This tutorial assumes that Xcode is already installed and that a basic application is already setup.
First, unzip the binary distribution. In Finder, navigate to the sqlcipher-macos-VERSION.zip file you received and unzip it by double-clicking on the zip file. Next, open up your macOS project's directory in Finder and manually copy the unzipped resources from the sqlcipher-macos-VERSION
folder into it.
Next, we'll add the Framework itself to your project's References. Open up your project in Xcode, and once it's loaded, right-click (or control-click) on your project's icon in the Project Navigator (Command+1) and select 'Add Files to ""...'
Navigate to and select the sqlcipher-macos-VERSION/SQLCipher.framework
file. The file should now appear in the Project Navigator.
Navigate to you project's general tab in Xcode. Within the Frameworks, Libraries, and Embedded Content section, set SQLCipher.framework
to Embed & Sign:
You will next edit one other setting on your Application Target to ensure the SQLCipher builds correctly—"Other C Flags." Start typing "Other C Flags" into the search field until the setting appears, double click to edit it, and in the pop-up add the following value: -DSQLITE_HAS_CODEC
If your project is Swift, there's one additional setting you need to edit to ensure SQLCipher builds correctly — "Preprocessor Macros". Start typing "Preprocessor Macros" into the search field until the setting appears. Add SQLITE_HAS_CODEC=1
for both the Debug and Release settings.
Finally, still within the Application Target Settings, switch to the Build Phases tab. Under Link With Libraries, add Security.framework.
Now that the SQLCipher library is incorporated into the project you can start using the library immediately. Telling SQLCipher to encrypt a database is easy:
#import <SQLCipher/sqlite3.h>
...
NSString *databasePath = [[NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES) objectAtIndex:0]
stringByAppendingPathComponent: @"sqlcipher.db"];
sqlite3 *db;
sqlite3_stmt *stmt;
bool sqlcipher_valid = NO;
if (sqlite3_open([databasePath UTF8String], &db) == SQLITE_OK) {
const char* key = [@"BIGSecret" UTF8String];
sqlite3_key(db, key, (int)strlen(key));
// When using Commercial or Enterprise packages you must call PRAGMA cipher_license with a valid License Code.
// Failure to provide a license code will result in an SQLITE_AUTH(23) error.
// Trial licenses are available at https://www.zetetic.net/sqlcipher/trial/
NSString *licenseQuery = [NSString stringWithFormat:@"PRAGMA cipher_license='%@';", @"ENTER_LICENSE_KEY_HERE"];
sqlite3_exec(db, [licenseQuery UTF8String], NULL, NULL, NULL);
int rc = sqlite3_exec(db, (const char*) "SELECT count(*) FROM sqlite_master;", NULL, NULL, NULL);
if (rc == SQLITE_OK) {
if(sqlite3_prepare_v2(db, "PRAGMA cipher_version;", -1, &stmt, NULL) == SQLITE_OK) {
if(sqlite3_step(stmt)== SQLITE_ROW) {
const unsigned char *ver = sqlite3_column_text(stmt, 0);
if(ver != NULL) {
sqlcipher_valid = YES;
// password is correct (or database initialize), and verified to be using sqlcipher
}
}
sqlite3_finalize(stmt);
}
}
sqlite3_close(db);
}
Using SQLCipher with Swift in Xcode requires that you set up a bridging header to make the library available in your code. In the bridging header add #import <SQLCipher/sqlite3.h>
.
Here's an example of using the API SQLCipher provides in Swift 4:
var rc: Int32
var db: OpaquePointer? = nil
var stmt: OpaquePointer? = nil
let password: String = "correct horse battery staple"
rc = sqlite3_open(":memory:", &db)
if (rc != SQLITE_OK) {
let errmsg = String(cString: sqlite3_errmsg(db))
NSLog("Error opening database: \(errmsg)")
return
}
rc = sqlite3_key(db, password, Int32(password.utf8CString.count))
if (rc != SQLITE_OK) {
let errmsg = String(cString: sqlite3_errmsg(db))
NSLog("Error setting key: \(errmsg)")
}
// When using Commercial or Enterprise packages you must call PRAGMA cipher_license with a valid License Code.
// Failure to provide a license code will result in an SQLITE_AUTH(23) error.
// Trial licenses are available at https://www.zetetic.net/sqlcipher/trial/
let licensePragma = ("PRAGMA cipher_license = 'ENTER_LICENSE_KEY_HERE';" as NSString).utf8String
rc = sqlite3_exec(db, licensePragma, nil, nil, nil)
if (rc != SQLITE_OK) {
let errmsg = String(cString: sqlite3_errmsg(db))
NSLog("Error with cipher_license: \(errmsg)")
}
rc = sqlite3_prepare(db, "PRAGMA cipher_version;", -1, &stmt, nil)
if (rc != SQLITE_OK) {
let errmsg = String(cString: sqlite3_errmsg(db))
NSLog("Error preparing SQL: \(errmsg)")
}
rc = sqlite3_step(stmt)
if (rc == SQLITE_ROW) {
NSLog("cipher_version: %s", sqlite3_column_text(stmt, 0))
} else {
let errmsg = String(cString: sqlite3_errmsg(db))
NSLog("Error retrieiving cipher_version: \(errmsg)")
}
sqlite3_finalize(stmt)
sqlite3_close(db)
In most cases SQLCipher uses PBKDF2, a salted and iterated key derivation function, to obtain the encryption key. Alternately, an application can tell SQLCipher to use a specific binary key in blob notation (note that SQLCipher requires exactly 256 bits of key material), i.e.
PRAGMA key = "x'2DD29CA851E7B56E4697B0E1F08507293D761A05CE4D1B628663F411A8086D99'";
Once the key is set SQLCipher will automatically encrypt all data in the database! Note that if you don't set a key then SQLCipher will operate identically to a standard SQLite database.
After the application is wired up to use SQLCipher, take a peek at the resulting data files to make sure everything is in order. An ordinary SQLite database will look something like the following under hexdump. Note that the file type, schema, and data are clearly readable.
% hexdump -C plaintext.db
00000000 53 51 4c 69 74 65 20 66 6f 72 6d 61 74 20 33 00 |SQLite format 3.|
00000010 04 00 01 01 00 40 20 20 00 00 00 04 00 00 00 00 |.....@ ........|
...
000003b0 00 00 00 00 24 02 06 17 11 11 01 35 74 61 62 6c |....$......5tabl|
000003c0 65 74 32 74 32 03 43 52 45 41 54 45 20 54 41 42 |et2t2.CREATE TAB|
000003d0 4c 45 20 74 32 28 61 2c 62 29 24 01 06 17 11 11 |LE t2(a,b)$.....|
000003e0 01 35 74 61 62 6c 65 74 31 74 31 02 43 52 45 41 |.5tablet1t1.CREA|
000003f0 54 45 20 54 41 42 4c 45 20 74 31 28 61 2c 62 29 |TE TABLE t1(a,b)|
...
000007d0 00 00 00 14 02 03 01 2d 02 74 77 6f 20 66 6f 72 |.......-.two for|
000007e0 20 74 68 65 20 73 68 6f 77 15 01 03 01 2f 01 6f | the show..../.o|
000007f0 6e 65 20 66 6f 72 20 74 68 65 20 6d 6f 6e 65 79 |ne for the money|
Locate the sqlcipher data base file under /Users/[username]/Documents/sqlcipher.db
. Try running hexdump on the application database. With SQLCipher the output should looks completely random, with no discerning characteristics at all.
% hexdump -C sqlcipher.db
00000000 1b 31 3c e3 aa 71 ae 39 6d 06 f6 21 63 85 a6 ae |.1<..q.9m..!c...|
00000010 ca 70 91 3e f5 a5 03 e5 b3 32 67 2e 82 18 97 5a |.p.>.....2g....Z|
00000020 34 d8 65 95 eb 17 10 47 a7 5e 23 20 21 21 d4 d1 |4.e....G.^# !!..|
...
000007d0 af e8 21 ea 0d 4f 44 fe 15 b7 c2 94 7b ee ca 0b |..!..OD.....{...|
000007e0 29 8b 72 93 1d 21 e9 91 d4 3c 99 fc aa 64 d2 55 |).r..!...<...d.U|
000007f0 d5 e9 3f 91 18 a9 c5 4b 25 cb 84 86 82 0a 08 7f |..?....K%.......|
00000800
Other sensible testing steps include:
This package can be purchased directly from the Zetetic Store and licensed software is delivered immediately upon payment.