
Enhancing
Password Based
Key Derivation

Techniques
PasswordsCon 2014

Presented by & Stephen Lombardo Nick Parker

SQLCipher

 is an open source extension to SQLite that provides
transparent 256-bit AES encryption of database files

SQLCipher

SQLCipher Platform Targets
C/C++, Obj-C, QT, Win32/.NET, Java, Python, Ruby, Linux, Mac OS X,

iPhone/iOS, Android, Xamarin.iOS, and Xamarin.Android

Broad spectrum of use cases in both mobile and desktop devices

Our focus on securing user data where part of the key material is

provided by the user

How it Works

Transparent interaction

On-the-fly

Multiple crypto providers

Standard KDF (salt + passphrase)

PBKDF2

Predates Scrypt

Current State of the Union
SQLCipher uses 64,000 iterations when computing a key using
PBKDF2
SQLCipher previously used 4,000 iterations

How Can We Do Better

Adaptive key derivation work factor
Multifactor hardware token integration

Device and Platform Challenges
Our world isn't static

Problems with static KDF
length

Desktop and mobile hardware differ
Technology evolves (i.e., GPU acceleration)
Different security requirements / risk profiles / UX experience

Adaptive KDF Goals
Fast sampling across platforms
Compute ideal work factor limited by time
Allow sampling to occur on any platform

Select KDF length By Security
Needs

 sqlcipher> PRAGMA cipher_kdf_compute;

Sample KDF on device
Compute iteration length based on desired runtime
Runs by default
Tunable for time

Tune the Sampling

 ./sqlcipher foo.db
 sqlcipher> PRAGMA key = 'foo';
 sqlcipher> PRAGMA cipher_kdf_compute;
 cipher_kdf_compute

 1,096,007

 ./sqlcipher foo.db
 sqlcipher> PRAGMA key = 'foo';
 sqlcipher> PRAGMA cipher_kdf_compute = 2.0;
 cipher_kdf_compute

 2,278,910

 ./sqlcipher foo.db
 sqlcipher> PRAGMA key = 'foo';
 sqlcipher> PRAGMA cipher_kdf_compute = .5;
 cipher_kdf_compute

 575,280

PBKDF2 Sampling Results
Device Computed Work Factor
Mac Book Pro (2.3 GHz) 1,161,162
iOS Simulator (7.1) 1,060,260
iPhone 5S 481,882
Android Emulator (4.4.2) 44,139
Android Nexus S (2.3.6) 72,800
Android Galaxy Tab 2 (4.2.2) 80,640

Persisting Configuration
Previously hard coded KDF work factor
Now persist KDF work factor

New Database Structure

Adaptive KDF Summary
Pros:

Fast sampling across platforms
Compute ideal work factor limited by time
Allow sampling to occur on any platform

Cons:
Cross device performance
Additional complexity within SQLCipher

Multi Factor Key Derivation
Introduce an addition factor into key derivation process

Something you know: Passphrase

something you have: Hardware Token

Stepping Back - Current KDF
Secret database key DKey
Random database Salt (public) DSalt
Iterations / Work Factor (adaptive!) I
Key Length

PBKDF2(DKey, DSalt, I, Length)

Token Requirements
Works offline

Simple interface (USB?)

Widely available

Onboard crypto

Secure key storage

Multi-use

Inexpensive

Yubikey

Long history
Multiple form factors
Practically indestructable
$25 / $40
http://www.yubico.com/

DaPlug / Plug-Up

New entrant

Only Available in Europe

€8.00 ($110 Shipping!)

http://www.daplug.io/

Common Denominator
Onboard HMAC-SHA1 Challenge / Response API
Programmable write-only key

Simple Implementation
Onboard Token Key and HMAC
Permute database salt before use
Uses SQLCipher provider callback

Simple MFA Process
Secret database key DKey
Random database Salt (public) DSalt
Iterations / Work Factor (adaptive) I
Key Length
Token Key TKey

HMAC-SHA1

PBKDF2(DKey, HMAC-SHA1(TKey,DSalt), I, Length)

Results
Pros:

Database can only be opened with token in place

Very simple implementation

Key can't be extracted from token

Operating on salt does not disclose non-public data to token

hardware

Cons:

USB Required

Custom code

API dependencies

More Information
http://sqlcipher.net
http://github.com/sqlcipher/sqlcipher/tree/vfs
http://github.com/sqlcipher/sqlcipher-mfa

Feedback
Join the SQLCipher discussion

https://discuss.zetetic.net/category/sqlcipher

Questions?

