Enhancing
Password Based
Key Derivation
Techniques

PasswordsCon 2014
Presented by Stephen Lombardo & Nick Parker

& zstetic

SQLCipher

% hexdump -C ypted-sglite.db
pep@@ARe 53 5° 74 6 &
pRERAA1E
ARERA3ILE
BRRRB3cH
BRERB3IdE
BEORB3eD

N
Ln

=

=
o=
|

e

=

~] L
"

o=
Lad
Fd L]

=
=4}
[F=D S R RN R e g N

o
D R L

e I =

geeBR3Ife
BRBEEbLdE
Be0BBbed
BeoBabTe

oo
L e B
=

=] D o

=] T S

[L e

=
o=
L @& =h 0L

R E-R - RN -
=]

Fd L@ L) & L0

—h @ WO
=~
=

oo @ R

O @A W W
]

o
=]

% hexdump -C encrypted-sglcipher.db

geeeeeed de ab bc 3a 48 2Zb 5d 8@ b@ d2 9e 3b 75 91 T6 T3 |...:@+] Liu.vs|
feeeeald bc 41 7@ @c Bc ab a® Ja 37 eb a2z ad a% 27 a5 @a |.Ap....Z7...."'..|
20000028 38 c9 @b 9c @6 57 7B 96 67 a2 e> 7B 8 Bc 58 f3 |B....Wwx.g..x..X.|
20000038 ea 7c cb 23 14 Ba 75 33 d@ a5 2c 30 2e el a4 96 |.|.#..u3d..,0....|
a0geeed4d bl cb 5a 21 67 Ba 31 bb 3b de a2 d4 8@ b4 60 e3 |..Zlg.1.;..... =
fooeeesd @5 b@ 75 @4 f2 26 66 ed c7 d4e Ve O9c ac 2Ze ec 1d |..u. L &F. L N~oLol |
gpeeeeed 2d fc 31 b4 32 ce 24 Ba d@ 23 71 b@ 1f 21 12 2c |-.1.2.%..#qg..!.,|
foeeee7® 92 af Be d9 de ac 76 eb 20 62 36 cb f3 83 f5 b3 |...... e ATE e |
0OBEAAER 53 d@ 5f 4c S5e ec 5b Ba be e7 dl 46 f@ d2 dc b9 |S._L".[....F....|
20000898 a3 59 db 63 ad ae cf d& ed 82 29 83 dd c7 86 13 |.¥.c...... Fewuus |

SQLCipher is an open source extension to SQLite that provides
transparent 256-bit AES encryption of database files

SQLCipher Platform Targets

C/C++, Obj-C, QT, Win32/.NET, Java, Python, Ruby, Linux, Mac OS X,
iIPhone/iOS, Android, Xamarin.iOS, and Xamarin.Android

Broad spectrum of use cases in both mobile and desktop devices

Our focus on securing user data where part of the key material is
provided by the user

How it Works

Database Salt

Page -

1

Transparent interaction
On-the-fly

Multiple crypto providers
Standard KDF (salt + passphrase)
= PBKDF2

= Predates Scrypt

Current State of the Union

e SQLCipher uses 64,000 iterations when computing a key using
PBKDF2
e SQLCipher previously used 4,000 iterations

How Can We Do Better

e Adaptive key derivation work factor
e Multifactor hardware token integration

Device and Platform Challenges

Our world isn't static

loerror commented on May 3

| think that it would be awesome if PRAGMA kdf_iter was adaptive on a per device basis. My G1 phone is
crappy but my newest phone isn't - I'd like them to use a different kdf_iter value. If adaptive isn't possible,
I'd prefer something randomly generated in a range - so that brute force is highly impractical before the
database is acquired.

Moxie Marlinspike has done something similar to this with WhisperCore's full disk encryption. | think his

implementation was adaptive by some number of seconds of computation, so the value was likely within
a given distribution for a given device.

Problems with static KDF
length

e Desktop and mobile hardware differ
e Technology evolves (i.e., GPU acceleration)
e Different security requirements / risk profiles / UX experience

Adaptive KDF Goals

e Fast sampling across platforms
e Compute ideal work factor limited by time
e Allow sampling to occur on any platform

Select KDF length By Security
Needs

sglcipher> PRAGMA cipher kdf compute;

e Sample KDF on device

e Compute iteration length based on desired runtime
e Runs by default

e Tunable for time

Tune the Sampling

./sglcipher foo.db

sglcipher> PRAGMA key = 'foo';
sglcipher> PRAGMA cipher kdf compute;
cipher kdf compute

1,096,007

./sqlcipher foo.db

sglcipher> PRAGMA key = 'foo';

sglcipher> PRAGMA cipher kdf compute = 2.0;
cipher kdf compute

2,278,910

./sqlcipher foo.db

sqlcipher> PRAGMA key = 'foo';

sqlcipher> PRAGMA cipher kdf compute = .5;
cipher kdf compute

575,280

PBKDF2 Sampling Results

Device Computed Work Factor
Mac Book Pro (2.3 GHz) 1,161,162

iOS Simulator (7.1) 1,060,260

iPhone 5S 481,882

Android Emulator (4.4.2) 44139

Android Nexus S (2.3.6) 72,800

Android Galaxy Tab 2 (4.2.2) 80,640

Persisting Configuration

e Previously hard coded KDF work factor
e Now persist KDF work factor

New Database Structure

Tokenizer

Parser

Database Salt

sqlite3_prepare()

Code Generator

Virtual Machine

B-Tree

—
e
=N
7]
-
IIml
ot]
]
=
o
wn

Pager

Adaptive KDF Summary

Pros:

= Fast sampling across platforms
= Compute ideal work factor limited by time
= Allow sampling to occur on any platform

Ccons:

= Cross device performance
= Additional complexity within SQLCipher

Multi Factor Key Derivation

e |Introduce an addition factor into key derivation process
e = Something you know: Passphrase
= something you have: Hardware Token

Stepping Back - Current KDF

e Secret database key DKey

e Random database Salt (public) DSalt
e |terations /Work Factor (adaptive!) |
e Key Length

PBKDF2 (DKey, DSalt, I, Length)

Token Requirements

Works offline

Simple interface (USB?)
Widely available
Onboard crypto
Secure key storage
Multi-use

Inexpensive

Long history

Multiple form factors
Practically indestructable
$25/ $40
http://www.yubico.com/

DaPlug / Plug-Up

New entrant

Only Available in Europe
€8.00 ($110 Shipping!)
http://www.daplug.io/

Common Denominator

e Onboard HMAC-SHA1 Challenge / Response API
e Programmable write-only key

Simple Implementation

e Onboard Token Key and HMAC
e Permute database salt before use
e Uses SQLCipher provider callback

Simple MFA Process

e Secret database key DKey

e Random database Salt (public) DSalt
e |terations /Work Factor (adaptive) |
e Key Length

e Token Key TKey

e HMAC-SHA1

PBKDF2 (DKey, HMAC-SHAI(TKey,DSalt), I, Length)

Results

Pros:

= Database can only be opened with token in place

= Very simple implementation

= Key can't be extracted from token

= QOperating on salt does not disclose non-public data to token
hardware

Cons:

= USB Required
= Custom code
= AP| dependencies

More Information

e http://sqlcipher.net
e http://github.com/sqglcipher/sqlcipher/tree/vfs
e http://github.com/sqglcipher/sqlcipher-mfa

Feedback

Join the SQLCipher discussion
https://discuss.zetetic.net/category/sqlcipher

Questions?

